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Parameters

C of m Energy 1.5 3 TeV
Luminosity 0.92 3.4 |10** cm?sec™!
Beam-beam Tune Shift ~0.087 | ~0.087

Muons/bunch 2 (1.44 7) 2 1012
Total muon Power 9 15 MW
Ring <bending field> 6 8.4 T

Ring circumference 2.6 4.5 km
f*atlP =0, 10 5 mm
rms momentum spread | 0.1 (0.37) | 0.1 %
Required depth for v rad ~20 ~ 200 m
Proton Energy 8 8 GeV
Muon per proton 0.16 0.16

Muon Survival 7 6 %
protons/pulse 187 (134 7) | 200 Tp
Repetition Rate 15 (21 7) 12 Hz
Proton Driver power ~3.5 ~3 MW
Muon Trans Emittance 25 (18 ?) 25 pi mm mrad
Muon Long Emittance |72k (210k ?)| 72,000 | pi mm mrad

The 3 TeV numbers are far less studied than the 1.5 TeV ones
The numbers keep changing & remain uncertain We just do not know enough
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Luminosity Dependency
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F and F5 depend on the hourglass effect and 'Disruption’ enhancement.
Both are of order 1.0, so approximately:
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e Beam beam tune shift Av, if too large, causes beam loss

e Simulations and electron experience suggests a limit of

Ar < 0.1

e |f this can be achieved then

— Luminosity does NOT depend on emittance
— Luminosity o< Beam Power, bending fields, and small 5*



Collider ring design

e |t must accept the transverse emittance with 3-5 sigma

e |t should have the smallest possible 3* (tight focusing at IP)
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e |t should have the smallest circumference — the highest average bending field
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e |t should have the largest possible momentum acceptance
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The larger €| the smaller we can make ¢ for the same ¢
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The latest lattice (Eliana’s) has dp/p acceptance — 1 % which would allow
o,/p: 0.1 — 0.3 % and might allow lower €, (see later)



Dependencies on Transverse Emittance
Luminosity may not depend on emittance BUT
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e, |12 25 50 |7 mm mrad
N,|1 2 4 1012
Np 03 187 374 Tp For 1.5 TeV (c of m)
frep 30 15 7 Hz

e N, =4 10" would require lower rf frequency to accelerate
o N, =374 Tp — Space charge problems in buncher
e But getting ¢, < 25 is hard



Cooling — Emittances and transmission

00| | 2 mm mrad g
— i
| 000k Eq 6D Cooling c
2 - ‘\‘ before merge 1 -
£ - . |25 mm mrad R o:;tz
c 100k % _~ ~ )
£ i Merge to single bunches
) bunches
e 10k E Initial linear
5 : _. transverse
E L Final cooling
o I Trangveljse\
g0 T E g:;'fl)_l'gglm ” ~ 6D cooling
S . olenolas after merge

|OO .' I Lo a1l I L a0l L0 a1l I Trans

10 100 1000 10,000 Emittance

e Every stage simulated at some level, But with many caveats
e Final ¢, = 25 (mm mrad) obtained in 50 T HTS solenoid

e 12 (mm mrad) gives 10 x Required Longitudinal emittance



Parameters using Eliana’s New Lattice
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6D cooling Methods

e Several proposed schemes:

— RFOFO Guggenheim

— FOFO Snake

—HCC
e They all have rf, focusing, absorbers
e They all work in simulation
e They could be used interchangeably

e The choice will depend on
technical questions no yet resolved

e An important parameter is
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Estimated transmission — p intensities & power
Based on simulations plus relatively optimistic estimates of matching
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e Only = 7% survive (only part of this loss is from decay)

e This means that the initial pion, and thus proton, bunches must be intense



Meson Production — Proton Energy
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e Maximum production at 8 GeV
e Requires =~ 200 Tp in 2 nsec — Severe space charge tune shift in buncher

e But appears possible with 6-8 bunches & trombones (Ankenbrandt)

Different bunches kicked to different

S arcs to bring all together on target

D)D) )
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Loading of Muon Acceleration ;

Bunch 2 10'2
e Short range longitudinal wake | sigma=8 mm
for 1.3 GHz ILC cavities
& 0,=13.2 mm rms
il Wake -
e Wake=3.75 MV (Yakovlev) 6.2 MV/
o If 31 MV/m = 12% wake PR B
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e Uses =~ 10 % of rf energy for each transit of both charges
e Giving good efficiency but requiring high rf power to maintain gradient

e 2 102 muons per bunch does not look impossible
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Neutrino Radiation
Numbers in paretneses for 3 TeV

Earth surface
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Neutrino Radiation Constraint on Beam Power
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e For £ o< 2 then: Radiation 74

e Little problem at 1.5 TeV
e Depth of order 200 m for 3 TeV ring

e But muon power must be constrained
e straights must be avoided — combined function magnets

e Probably practical to "own" areas of radiation from IP straight sections
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Parameters again

C of m Energy 1.5 3 6 TeV
Luminosity 0.92 3.4 0.9 |10** cm?sec™!
Beam-beam Tune Shift ~0.087 | ~0.087|~0.087

Muons/bunch 2 (1.44 7) 2 2 1012
Total muon Power 9 15 3.7 MW
Ring <bending field> 6 8.4 8.4 T

Ring circumference 2.6 4.5 9 km
£*at IP = o, 10 5 2.5 mm
rms momentum spread | 0.1 (0.37) | 0.1 0.1 %
Required depth for v rad ~20 ~ 200 | ~ 200 m
Proton Energy 8 8 8 GeV
Muon per proton 0.16 0.16 0.16

Muon Survival 7 6 5 %
protons/pulse 187 (134 7) | 200 240 Tp
Repetition Rate 15 (21 7) 12 1.5 Hz
Proton Driver power ~3.5 ~3 | ~0.45 MW
Muon Trans Emittance 25 (18 ?) 25 25 pi mm mrad
Muon Long Emittance |72k (210k ?7)| 72,000 | 72,000 | pi mm mrad

The 6 TeV numbers are a blind extrapolation with the same v radiation
One should investigate going deeper, Av correction, higher < B >
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Conclusion

e All parameters are tightly inter-connected
e They keep changing as we learn more, and remain uncertain

e The least certain parameter is probably the muon survival in cooling
giving uncertainties in:

— proton bunch intensity
— required repetition rate

— luminosity

e We also do not yet have a design for the 3 TeV ring
so we do not know

— (" and thus luminosity

—dp/p and thus longitudinal emittance requirement

e Much work to be done
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